Publications

Measurement of Non-Equilibrium Solvent Release from Heavy Oil during Pressure Depletion

Bryan, J.L., Nickel, E., Kantzas, A.

DOI: 10.2118/189729-MS
SPE 189729, presented at the SPE Canada Heavy Oil Technical Conference, Calgary, Alberta, Canada, March 13–14, 2018.

ABSTRACT

Cyclic solvent injection (CSI) is a promising technology for enhanced production of heavy oil in post-CHOPS (Cold Heavy Oil Production with Sand) fields. The first stage of a CSI cycle involves the injection of solvent vapour, which re-energizes the reservoir and dissolves into oil, reducing its viscosity. The second stage of a CSI cycle involves dropping the pressure to flow the solvent-diluted oil back to the well. This is the solvent analog to cyclic steam stimulation (CSS). A key difference between solvent and steam is that the heat from steam stays in the oil even during production, while in solvent-diluted oil, if solvent comes out of solution as pressure drops, oil viscosity will increase again and one of the main benefits of the solvent will be lost. Solvent selection in CSI needs to consider which solvents have non-equilibrium properties, specifically delayed release during pressure depletion.

This study presents a set of low field nuclear magnetic resonance (NMR) tests that were run on a 3,370 mPa·s viscosity heavy oil and several solvents: methane-propane and methane-CO2. NMR measures the relaxation rate of protons in the presence of magnetic fields. When fluid viscosity decreases, the fluid signal relaxes more slowly. A properly calibrated NMR model can be used to measure the viscosity of the liquid phase in a solvent-oil mixture as pressure drops and gas leaves solution. This approach does not require flow, and can also be used to measure the in-situ viscosity of oil in the sand.

Tests were run using methane-CO2 solvents with varying CO2 concentration to study the impact of live oil viscosity on the rate of solvent release. For lower initial live oil viscosity, the solvent is able to more quickly leave solution from the oil. Additional tests run using a methane-propane solvent demonstrate the impact of varying solvent type for the same initial solution viscosity. Both CO2 and propane show significant non-equilibrium solvent release during depletion.

Measurements of non-equilibrium solvent release from oil are an important piece in the understanding and modeling of heavy oil CSI. Equilibrium PVT data shows how different solvents can affect heavy oil systems, but the non-equilibrium solvent release is crucial for these solvents to work as recovery agents in the field. The results presented in this study provide useful data for CO2 and propane as potential CSI solvents, and help in the understanding of the role of viscosity vs. solvent type in the diluted oil response.

A full version of this paper is available on OnePetro Online.