E-MAIL NEWSLETTER

Sign up and NOW to receive the latest news, updates and technological advancements made for the Special Core Analysis & Enhanced Oil Recovery Industry

If you don't sign up, you won't know when the next breakthrough occurs!

Viscosity Predictions for Crude Oils and Crude Oil Emulsions Using Low Field NMR

Home/Resources/Publications/Viscosity Predictions for Crude Oils and Crude Oil Emulsions Using Low Field NMR
Viscosity Predictions for Crude Oils and Crude Oil Emulsions Using Low Field NMR 2016-10-25T11:54:18+00:00

Publications

Viscosity Predictions for Crude Oils and Crude Oil Emulsions Using Low Field NMR

Bryan, J.L. Kantzas, A., and Bellehumeur, C.

DOI: 10.2118/77329-MS
SPE 77329, presented at the 2002 SPE Annual Technical Conference and Exhibition, San Antonio Texas, 29 September – 2 October 2002.

ABSTRACT

Knowledge of oil viscosity is vital to the petroleum industry, and is especially important when considering production of heavy oil and bitumen. As viscosity increases, conventional measurements become progressively less accurate and more difficult to obtain. Oil viscosities measured in the lab may also be not indicative of true in-situ viscosities. An alternate method is required for predicting oil viscosity, especially if this method can be applied in-situ. Stable crude oil emulsions are prevalent in many stages of the production and transport of heavy oil and bitumen. Knowledge of emulsion viscosity is necessary for determining energy requirements for transport and upgrading of the produced crude.

Low field nuclear magnetic resonance is examined in this work for its potential to predict viscosity of crude oil and crude oil emulsions. NMR is an attractive alternative to conventional viscosity measurements, because it can provide fast, unbiased and non-destructive data. A correlation is presented that predicts fluid viscosities from under 1 cP to over 3 000 000 cP over 25 – 80°C, making it valid over a wider range of viscosities and temperatures than any other published NMR viscosity correlation. With tuning, this model can predict very accurate changes in viscosity with temperature for a single oil. An NMR emulsion viscosity model is also presented that uses the oil viscosity and water fraction, both determined from NMR, to predict emulsion viscosity. This correlation is able to provide order of magnitude emulsion viscosity predictions for a wide range of emulsion water cuts and viscosities. Work has also been done to extend the viscosity predictions to in-situ viscosity measurements, which can then be extracted from logs. Preliminary findings on in-situ oil viscosity are encouraging, and indicate that NMR has great potential as a tool for in-situ viscosity determination.

A full version of this paper is available on OnePetro Online.

Get Paper